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A FORMULA SHEET IS INCLUDED ON PAGES 3-4

Put your name on all pages which you hand in, and number them. Write the total number of pages you
hand in on the first page. Write clearly and not with pencil or red pen. Always motivate your answers.
Success!

Problem 1 Connected components (20 pt)
Consider a binary image f with pixel values 1 (foreground) and 0 (background) on a uniform pixel grid.

a.

b.

(5pt) Define the concept of m-connected component of the foreground, where m = 4 or m = 8; same
for the background.

(10pt) Consider the binary image in Figure 1(a). Black dots represent foreground pixels, empty cells
background pixels. Sketch the connected components of this image when choosing m-connectivity
(m = 4 or m = 8) for the foreground and n-connectivity (n = 4 or n = 8) for the background, for
all four combinations of m and n, ie., ) m =4,n =4, 2m =4n =8 B)m = 8n = 4
(4) m = 8,n = 8. Use upper case letters to label the pixels of the connected components of the
foreground, and lower case letters for those of the background.

. (5pt) Assume that the image in Figure 1(a) was obtained after digitizing a continuous image of a black

ellipse on a white background. Which of the four combinations in the previous question would best
represent the topology of the continuous image? Motivate your answer.
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Figure 1: (a): binary image. (b): grey scale image.

Problem 2 Spatial filtering (25 pt)
Consider spatial filtering with a 3 x 3 mask of a grey scale image.

a.
b.

(3pt) Give the filter mask in the case of uniform filtering. What is the goal of uniform filtering?
(3pt) Give the filter mask in the case of Laplacian filtering (several answers possible). What is the goal
of Laplacian filtering?

. (4pt) Define the median filter with a 3 x 3 mask and sketch the output image when applying this filter

to the image in Figure 1(b). What is the goal of median filtering?

. (5pt) Linear and space-invariant (LSI) image filters can be represented as a convolution with a kernel

h called the “point spread function”. Explain this name for h.

. (10pt) Describe the main steps in the implementation of convolution filtering by means of frequency
domain techniques.
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Figure 2: (a): grey scale image. (b): CT image. (c): two-level wavelet decomposition of (b).

(continue on page 2)



Image Processing, 30-1-2014 2

Problem 3 Wavelet transforms (20 pt)

a. (5pt) Consider the following input vector: ¢y = (8,4, 6,2). When the unnormalized 1-D Haar scal-
ing and wavelet functions hy = 3(1,1), hy = 2(1,—1) are used, the one-level (J = 1) wavelet
decomposition of ¢y is the vector (6,4, 2, 2). Explain this result.

b. (5pt) Describe in words how you can build a J-level 2D discrete wavelet transform of an image by
using separable scaling and wavelet functions. Explain the various subimages in the right image of
Figure 2.

c. (5pt) Consider the 4 x 4 grey scale image in Figure 2(a). Compute the one-level (J = 1) 2D discrete
wavelet transform of this image, assuming separable scaling and wavelet functions constructed from
the unnormalized 1-D Haar scaling and wavelet functions, as defined above in question a.

d. (5pt) Explain how wavelet transforms can be used for image compression.

Problem 4 Morphological operations (15 pt)

Consider a digital binary image X consisting of NV (filled) black squares on a white background, where the
ith square has a size of L; by L; pixels, with L; > 1 an integer for all ¢ = 1,2,..., N. The squares may
touch or partly overlap; see Figure 3.

Figure 3: Binary image X (the bounding box is not part of the image X).

Assume that the number of squares and their sizes are unknown. Define a sequence of image operations on
the image X, only making use of (i) set operations, and (ii) morphological operations, which produces the
required result in the following cases:

a. (10pt) The output image should only contain the square(s) in the input image whose length/width is at
least equal to a given integer value L (with L > 1).

b. (5pt) The output image should only contain the square(s) in the input image whose length/width is
precisely equal to a given value L (with L > 1).

Problem 5 Image segmentation and description (20 pt)

(a)

a. (10pt) Consider object segmentation. You can choose from the following collection of segmentation
methods: (i) thresholding; (ii) Marr-Hildreth’s method; (iii) split and merge; (iv) watershed method.
For each of the four images in the figure above, indicate which segmentation method(s) you think
perform(s) best, and why.

b. (10pt) Describe at least two contour descriptors and two regional descriptors which can characterize
objects in binary or grey scale images.
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Formula sheet

Co-occurrence matrix g(i, j) = {no. of pixel pairs with grey levels (z;, z;) satisfying predicate Qh 1<
i,j <L

Convolution, 2-D discrete (f x h)(z,y) = Zm;O n—O ! f(m,n) h(z —m,y —n),
forr=0,1,2,...,M —1,y=0,1,2,...,N -1

Convolution Theorem, 2-D discrete F{f x h}(u,v) = F(u,v) H(u,v)

Distance measures Euclidean: D, (p,q) = /(1 — a1)2 + (p2 — g2)?, City-block: Da(p,q) = |p1 — al+
|p2 — ga|, Chessboard: Ds(p,q) = max(|p1 — a1, |p2 — ¢z|)

Entropy, source H = — Z;=1 P(a;)log P(a;)
Entropy, estimated for L-level image: H=- Zﬁ;& pr(Tx) logs Pr(Tk)
1
. 2%
Error, root-mean square €;y,s = [ . D Ey_o ( flx,y)—F (m,y)) ]
Exponentials ¢® = cosz + isinz; cosz = (€ + e~i)/2; sinz = (e — et /2i

Filter, inverse f = f + H~1n, F(u,v) = F(u,v) + —(5(5‘3)5

Filter, parametric Wiener f = (H'H + KI)™ H'g, F(u,v) = [TI{_Z"%%;%E] G(u,v)

Fourier series of signal with period T: f(t) = Y_n__ Cn ¢t*F*t, with Fourier coefficients:

cn =% [T12, F(f) e dt, n=0,£1,%2,...

Fourier transform 1-D (continuous) F(u) = ff‘;o F(¢) e~i2mHt dt
Fourier transform 1-D, inverse (continuous) f(t) = ff° F(u) e2m¥t dp

Fourier Transform, 2-D Discrete F(u,v) = Y " Ey_o f(z,y) e~i2m(ua/M+vy/N)
foru=0,1,2,...,M —1,v=0,1,2,...,N -1

Fourier Transform, 2-D Inverse Discrete £(z,7) = 1x > oeo: SN F(u, v) ei?r(ua/M+vy/N)
forz=0,1,2,...,M —1,y=0,1,...,N -1

Fourier spectrum Fourier transform of f(z,y): F(u,v) = R(u,v)+%1 (u,v), Fourier spectrum: |F'(u,v)| =
/R2(u,v) + I%(u,v), phase angle: ¢(u,v) = arctan(%)

Gaussian function mean y, variance 0%: Go(z) = ——\/——- e~ (@—m)?/20”

Gradient Vf(a: y) = (Bz’ ay)

Histogram h(m) = #{(z,y) € D : f(=,y) = m}. Cumulative histogram: P{) = an=0 h(m)
Impulse, discrete §(0) = 1,6(z) = 0 for z € N\{0}

Tmpulse, continuous 3(0) = 00, 8(z) = 0 for z # 0, with [°_ f(t) 6(t — to) dt = f(to)
Impulse train sa7(t) = Yoo 8(t — nAT), with Fourier transform S(K) = 25 Ym0 O —
Laplacian V2f(z,y) = 3—21; + %Zé

Laplacian-of-Gaussian V2G,(z,y) = — =21 (1 - %) e 20" (12 = g% +y?)




Image Processing, 30-1-2014 4

Median The median of an odd number of numerical values is found by arranging all the numbers from
lowest value to highest value and picking the middle one.

Morphology

Dilation 64(X) =X @ A=U,c4 Xo = UzGX ={h€E: AhnXgé(?)}
where X, = {z + h:z € X}, heEamdA = {—a:a€ A}

Erosion c4o(X) =X 0 A=,caX-a ={h€E: A C X}

Opening 74(X) =X o0 A:= (X0 A)®A=0d4e4(X)

Closing ¢4(X) =X e A:= (XPA) o A=c464(X)

Hit-or-miss transform X ® (B, B;) = (X © B;) N (X°© By)

Thinning X ® B = X\(X ®B), Thickening X ® B = X U (X ®B)

Morphological reconstruction Marker F', mask G, structuring element B:
Xo=F,Xp,=(Xs-19B)NG, k=1,23,...

Morphological skeleton Image X, structuring element B: SK(X) = Uf:;o Sn(X),
Sn(X) =X © B\ (X © B) o B, where X ©B = X and N is the largest integer such that
Sn(X) #0

Grey value dilation (f & b)(z,y) = ma.x [f(z — s,y —t) +b(s,?)]

Grey value erosion (f © b)(z,y) = mm [f(z+ s,y +1t)—b(s,1)]
Grey value opening fob= (fOb) €Bb
Grey value closing feb= (f®b)Sb

Morphological gradient g = (f ®b) — (f ©b)
Top-hat filter T},,; = f — (f o b), Bottom-hat filter By, = (f ¢ b) —

Sampling of continuous function f(t): f(t) = f(t) sar(t) = 100 _ . f(t) 8(t — nAT).
Fourier transform of sampled function: Fi(u) = 2300 F(u— 2%)

Sampling theorem Signal f(t), bandwidth pimax: If 27 > 2pmax, F(£) = Y ope

n=-—0oo

f(nAT) sinc [t Z‘}T].

Sampling: downsampling by a factor of 2: |2 (ag,a1,as,...,a2v-1) = (a0, 02,04, .. .,82N—2)
Sampling: upsampling by a factor of 2: 12 (ao,a1,a2,...,an-1) = (@0,0,a1,0,a2,0,...,an-1,0)
Set, circularity ratio R. = £ of set with area A, perimeter P

Set, diameter Diam(B) = max [D(ps, p;)] with p;, p; on the boundary B and D a distance measure

Sinc function sinc (z) = ¥22) when & # 0, and sinc (0) = 1. If (t) = A for —-W/2 < ¢ < W/2 and
zero elswhere (block signal), then its Fourier transform is F(u) = A Wsinc (u W)

Spatial moments of an M x N image f(z,y): mpq = EFO Z 0 LaP oyl f(z,y), p,g=0,1,2,...
Statistical moments of distribution p(z): u, = Zz—O (t—m)"p(i),m = Zz_o 1310

2 Ey_() f (1’:’9)2
aso z”_ol(f(z,y) f@w)”
Wavelet decomposition with scaling function hg, wavelet function Ay. Forj =1,...,J:
Approximation: ¢; = He;j_1 =2 (hg * ¢j—1); Detail: d; = Gej—1 =l2 (h¢ *cJ 1)

Signal-to-noise ratio, mean-square SNR, s =

Wavelet reconstruction with dual scaling function 7L¢, dual wavelet function B¢. Forj=J,J-1,...,1:
Cj—1 = h¢ * (Tg Cj) + h¢' * (Tz dj)
Wavelet, Haar basis hy = —5(1,1), hy = 75(1,-1), hy = Z(11), hy = Z(1,-1)



